A Characterization and Sum Decomposition for Operator Ideals
نویسندگان
چکیده
Let L(H) be the ring of bounded operators on a separable Hubert space. Assuming the continuum hypothesis, we prove that in L(H) every two-sided ideal that contains an operator of infinite rank is the sum of two smaller two-sided ideals. The proof involves a new combinatorial description of ideals of L(H). This description is also used to deduce some related results about decompositions of ideals. Finally, we discuss the possibility of proving our main theorem under weaker assumptions than the continuum hypothesis and the impossibility of proving it without the axiom of choice.
منابع مشابه
Decomposition of ideals into pseudo-irreducible ideals in amalgamated algebra along an ideal
Let $f : A rightarrow B$ be a ring homomorphism and $J$ an ideal of $B$. In this paper, we give a necessary and sufficient condition for the amalgamated algebra along an ideal $Abowtie^fJ$ to be $J$-Noetherian. Then we give a characterization for pseudo-irreducible ideals of $Abowtie^fJ$, in special cases.
متن کاملStudy and characterization of some classes of polymatroidal ideals
In this paper, the class of polymatroidal ideals are studied. In particular, we show that any polymatroidal ideal has a regular decomposition function, so we can give its explicit resolution. We also characterize generic polymatroidal ideals. Finally, we characterize monomial ideals which all their powers are generalized Cohen-Macaulay polymatroidal ideals.
متن کاملA characterization of finitely generated multiplication modules
Let $R$ be a commutative ring with identity and $M$ be a finitely generated unital $R$-module. In this paper, first we give necessary and sufficient conditions that a finitely generated module to be a multiplication module. Moreover, we investigate some conditions which imply that the module $M$ is the direct sum of some cyclic modules and free modules. Then some properties of Fitting ideals o...
متن کاملASSOCIATED PRIME IDEALS IN C(X)
The minimal prime decomposition for semiprime ideals is defined and studied on z-ideals of C(X). The necessary and sufficient condition for existence of the minimal prime decomposition of a z-ideal / is given, when / satisfies one of the following conditions: (i) / is an intersection of maximal ideals. (ii) I is an intersection of O , s, when X is basically disconnected. (iii) I=O , when x X h...
متن کاملSums of Strongly z-Ideals and Prime Ideals in ${mathcal{R}} L$
It is well-known that the sum of two $z$-ideals in $C(X)$ is either $C(X)$ or a $z$-ideal. The main aim of this paper is to study the sum of strongly $z$-ideals in ${mathcal{R}} L$, the ring of real-valued continuous functions on a frame $L$. For every ideal $I$ in ${mathcal{R}} L$, we introduce the biggest strongly $z$-ideal included in $I$ and the smallest strongly $z$-ideal containing ...
متن کامل